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e The advantages of laser ceramics as a laser material

— Large apertures of the optical elements (like glasses)
— High thermal conductivity (at room temperatures like single
crystals)

— Ceramics is similar to single crystals in the absorption and
emission spectra as well as the fluorescence lifetime
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The specific property of laser ceramics is the thermally induced
distortion of the transmitting beam due to grains
—  Laser ceramics is usually made of cubic crystals and is naturally optically

Isotropic

—  The absorption of radiation leads to heating of the optical elements
—  Temperature gradients induce elastic stresses
—  Photoelastic effect induces optical anisotropy in the medium

—  Crystallographic axes variation from grain to grain results in the dielectric

permeability tensor variation
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— the piezooptic tensor
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"~ the stress tensor

the dielectric permeability tensor



* For each geometrical optics ray laser ceramics is
treated as a series of phase plates

 Each plate is birefringent and has its own eigen
polarizations and eigen phase shifts
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Small grains Large grains

More grain boundaries and Higher level of thermally
related “cold” distortions Induced distortions

 Modern technologies allow fabrication of ceramics with thin grain
boundaries (< 1 nm) giving the opportunity to reduce grain size (up
to ~ 1 um) keeping optical quality of the samples and reducing the
thermally induced distortions

A new calculation of thermal effects is required when the grain size
IS smaller than the wavelength since the geometrical optics
approximation becomes inaccurate
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the “cold” dielectric constant ——— \ photoelastic additive
the thermal additive  the average photoelastic
additive

 We used the Debye-Rayleigh
scattering theory (the small
disturbances method) in single
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the “cold” dielectric constant ——— \ photoelastic additive
the thermal additive  the average photoelastic
additive

 We used the Debye-Rayleigh
scattering theory (the small
disturbances method) in single

scattering approximation A (/80+8T)5ij+8A i N
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are small 0

 The transferred field can be treated as C_) /
a power series of g;:
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» Reflection and refraction of radiation i

on the ceramic faces as well as the e

attenuation of E, must be manually
treated
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The extinction coefficient (the attenuation factor of E,):

The average scattered intensity:
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r+p The spatial spectrum of correlation
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@, (x)= ;ZKI<U(p)>sin(Kp) pdp

2) numeric modeling (3D
Voronoi diagram)

_ 1) Spherical single-sized grains ~_3) The Markovian process
(R. V. Jones)
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» Uniform heating
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The scattered power fraction
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Thermally induced light scattering in laser ceramics has been
Investigated for an unconditioned grain size to wavelength ratio
using the Debye-Rayleigh scattering theory in single scattering
approximation.

A modeling spatial spectrum of the dielectric permeabillity variations
In ceramics was suggested.

The directional pattern of scattered radiation, the extinction
coefficient, and the scattered power fraction were calculated.

In the case of large grains the directional pattern is narrow and the
scattered power is proportional to the grain size. In the opposite
case scattering is almost isotropic, and the scattered power is
proportional to the grain size cubed, therefore rapidly lessens.

In the large grain case the scattered power fraction was compared
with the ratio of the fundamental mode radiation loss calculated in
the geometric optics approximation. The values obtained coincide.



Thank you for your attention
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